Aplikasi Getaran dan Glombang dalam Teknologi
Sonikasi adalah suatu teknologi yang memanfaatkan gelombang ultrasonik. Ultrasonik adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bisa didengar oleh manusia, yaitu kira-kira di atas 20 kHz. Gelombang ultrasonik dapat merambat dalam medium padat, cair, dan gas. Proses sonikasi ini mengubah sinyal listrik menjadi getaran fisik yang dapat diarahkan untuk suatu bahan dengan menggunakan alat yang bernama sonikator. Sonikasi ini biasanya dilakukan untuk memecah senyawa atau sel untuk pemeriksaan lebih lanjut. Getaran ini memiliki efek yang sangat kuat pada larutan, menyebabkan pecahnya molekul dan putusnya sel.
Bagian utama dari perangkat sonikasi adalah generator listrik ultrasonik. Perangkat ini membuat sinyal (biasanya sekitar 20 kHz) yang berkekuatan ke transduser. Transduser ini mengubah sinyal listrik dengan menggunakan kristal piezoelektrik, atau kristal yang merespon langsung ke listrik dengan menciptakan getaran mekanis dan kemudian dikeluarkan melewati probe. Probe sonikasi mengirimkan getaran ke larutan yang disonikasi. Probe ini akan bergerak seiring dengan getaran dan mentransmisikan ke dalam larutan. Probe bergerak naik dan turun pada tingkat kecepatan yang tinggi, meskipun amplitudo dapat dikontrol dan dipilih berdasarkan kualitas larutan yang disonikasi. Gerakan cepat probe menimbulkan efek yang disebut kavitasi. Rangkaian alat sonikasi dapat dilihat pada Gambar I.
Dalam hal kinetika kimia, ultrasonik dapat meningkatkan kereaktifan kimia pada suatu sistem yang secara efektif bertindak sebagai katalis untuk lebih mereaktifkan atom – atom dan molekul dalam sistem. Pada reaksi yang menggunakan bahan padat, ultrasonik ini berfungsi untuk memecah padatan dari energi yang ditimbulkan akibat runtuhnya kavitasi. Dampaknya ialah luas permukaan padatan lebih besar sehingga laju reaksi meningkat (Suslick, 1989). Semakin lama waktu sonikasi, ukuran partikel cenderung lebih homogen dan mengecil yang akhirnya menuju ukuran nanopartikel yang stabil serta penggumpalan pun semakin berkurang. Hal ini disebabkan karena gelombang kejut pada metode sonikasi dapat memisahkan penggumpalan partikel (agglomeration) dan terjadi dispersi sempurna dengan penambahan surfaktan sebagai penstabil.
Gambar I. Rangkaian Alat Sonikasi
http://aurelsains.blogspot.co.id/2018/03/aplikasi-getaran-dan-gelombang-dalam_43.html
USG
Seperti yang kita ketahui bahwa dibidang kedokteran, dikenal istilah Ultrasonography (USG). USG merupakan suatu metode diagnostik dengan menggunakan gelombang ultrasonik. Sebelum membahas lebih jauh tentang USG, sebelumnya kita perlu mengetahui definisi darigelombang ultrasonic itu sendiri. Gelombang ultrasonic adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bias didengar oleh mausia, yaitu kira-kira diatas 20 kilohertz. Dalam hal in gelombang ultrasonik merupakan gelombang diatas frekuensi suara. Gelombang ultrasonik dapat merambat dalam medium padat, cair dan gas. Reflektifitas dari gelombang ultrasonik ini dipermukaan cairan hampir sama dengan permukaan padat, tetapi pada tekstil dan busa dapat didengar, bersifat langsung dan mudah difokuskan. Kelebihan gelombang ultrsonik yang tidak dapoat didengar, bersifat langsung dan mudah difokuskan. Jarak suatu benda yang memanfaatkan delay gelombang pantul dan gelombang datang seperti padasistem radar dan deteksi gerakan oleh sensor pada robot atau hewan.
Pemahaman mengani sifat fisik gelombang ultrasonik sangat diperlukan di dalam pemeriksaan USG, antara lain :
1. Untuk mengetahui prinsip kerja, cara pemakaian & cara pemeriksaan alat USG.
2. Untuk membuat interpretasi gambaran USG & mengenal berbagai gambaran artefak yang ditimbulkan.
3. Untuk memahami efek biologik & segi keamanan dalam penggunaan alat diagnostik USG yang dewasa ini masih perlu dipantau.
Pada awalnya penemuan alat USG diawali dengan penemuan gelombang ultrasonik kemudian bertahun-tahun setelah itu, tepatnya sekira tahun 1920-an, prinsip kerja gelombang ultrasonik mulai diterapkan dalam bidang kedokteran. Penggunaan ultrasonik dalam bidang kedokteran ini pertama kali diaplikasikan untuk kepentingan terapi bukan untuk mendiagnosis suatu penyakit.
Dalam hal ini yang dimanfaatkan adalah kemampuan gelombang ultrasonik dalam menghancurkan sel-sel atau jaringan “berbahaya” ini kemudian secara luas diterapkan pula untuk penyembuhan penyakit-penyakit lainnya. Misalnya, terapi untuk penderita arthritis, haemorrhoids, asma, thyrotoxicosis, ulcus pepticum (tukak lambung), elephanthiasis (kaki gajah), dan bahkan terapi untuk penderita angina pectoris (nyeri dada). Baru pada awal tahun 1940, gelombang ultrasonik dinilai memungkinkan untuk digunakan sebagai alat mendiagnosis suatu penyakit, bukan lagi hanya untuk terapi.
Sonar
Prinsip kerja sonar berdasarkan prinsip pemantulan gelombang ultrasonik. Alat ini diperkenalkan pertama kali oleh Paul Langenvin, seorang ilmuwan dari Prancis pada tahun 1914.
Pada saat itu Paul dan pembantunya membuat alat yang dapat mengirim pancaran kuat gelombang bunyi berfrekuensi tinggi (ultrasonik) melalui air. Pada dasarnya SONAR memiliki dua bagian alat yang memancarkan gelombang ultrasonik yang disebut transmiter (emiter) dan alat yang dapat mendeteksi datangnya gelombang pantul (gema) yang disebut sensor (reciver). Gelombang ultrasonik dipancarkan oleh transmiter (pemancar) yang diarahkan ke sasaran, kemudian akan dipantulkan kembali dan ditangkap oleh pesawat penerima (reciver). Dengan mengukur waktu yang diperlukan dari gelombang dipancarkan sampai gelombang diterima lagi, maka dapat diketahui jarak yang ditentukan. Untuk mengukur kedalaman laut, SONAR diletakkan di bawah kapal. Dengan pancaran ultrasonik diarahkan lurus ke dasar laut, dalamnya air dapat dihitung dari panjang waktu antara pancaran yang turun dan naik setelah digemakan.
http://fikarramadhan.blogspot.co.id/2011/05/pemanfaatan-gelombang-ultrasonik-dalam.html
http://tempatkuberbagi40355.blogspot.co.id/2014/09/aplikasi-gelombang-bunyi.html
Apa itu Terapi Ultrasound
Terapi ultrasound adalah metode pengobatan yang menggunakan teknologi ultrasound atau gelombang suara untuk merangsang jaringan tubuh yang mengalami kerusakan. Walaupun telah lama digunakan di bidang kedokteran untuk berbagai tujuan, teknologi ultrasound lebih dikenal sebagai alat pemeriksaan daripada sebagai alat terapi. Salah satu keuntungan terapeutik dari ultrasound yang belum terlalu dikenal adalah pengobatan cedera otot. Oleh karena itu, terapi ultrasound sering digunakan dalam pengobatan muskuloskeletal dan cedera akibat olahraga.
Keberhasilan penggunaan teknologi ultrasound sebagai alat terapi bergantung pada kemampuannya untuk merangsang jaringan yang ada di bawah kulit dengan menggunakan gelombang suara frekuensi tinggi, mulai dari 800.000 Hz – 2.000.000 Hz. Efek penyembuhan dari ultrasound pertama ditemukan pada sekitar tahun 1940. Awalnya, terapi ini hanya digunakan oleh terapis fisik dan okupasi. Namun, saat ini penggunaan terapi ultrasound telah menyebar ke cabang ilmu kedokteran lainnya.
Pengertian Ultrasonic Cleaner ( Pembersih Ultrasonik )
Ultrasonic Cleaning atau ultrasonic cleaner adalah alat pembersih yang menggunakan gelombang ultrasonik (biasanya 20 -400Khz) dan cairan pembersih khusus (minimal aquadest ) digunakan untuk membersihkan bagian alat atau glassware .
Gelombang Ultrasonik dapat digunakan dengan hanya menggunakan air biasa, tapi penambahan solvent khusus akan membantu membuat dampak lebih baik.
Proses pembersihan biasanya berlangsung 3 sampai 6 menit.
Dalam perkembangannya alat ini juga sekarang digunakan untuk melarutkan sample.
Alat ini cocok juga digunakan untuk membersihkan : Kacamata, perhiasan, peralatan kedokteran gigi, printer head, sisir, peralatan tatto, gigi palsu, arloji, dan lain sebagainya.
Ultrasonic Testing (UT) merupakan bagian dari pengujian tanpa rusak, nondestructive test. Yang berkerjanya didasarkan pada propagasi gelombang ultrasonik terhadap obyek tertentu atau material yang diuji. Dalam aplikasi UT yang paling umum, gelombang pulsa ultrasonik yang sangat pendek dengan frekuensi pusat mulai dari 0,1-15 MHz, dan kadang-kadang hingga 50 MHz, ditransmisikan ke dalam bahan untuk mendeteksi cacat internal atau untuk mengkarakterisasi material. Contoh umum adalah pengukuran ketebalan ultrasonik, yang menguji ketebalan benda uji, misalnya, untuk memantau korosi pipa.
Pengujian ultrasonik sering dilakukan pada baja dan logam dan paduan lainnya, meskipun juga dapat digunakan pada beton, kayu dan komposit, meskipun dengan resolusi yang lebih rendah. Ini digunakan di banyak industri termasuk konstruksi baja dan aluminium, metalurgi, manufaktur, aerospace, otomotif dan sektor transportasi lainnya.
Pengujian ultrasonik sering dilakukan pada baja dan logam dan paduan lainnya, meskipun juga dapat digunakan pada beton, kayu dan komposit, meskipun dengan resolusi yang lebih rendah. Ini digunakan di banyak industri termasuk konstruksi baja dan aluminium, metalurgi, manufaktur, aerospace, otomotif dan sektor transportasi lainnya.
Secara umum, pengujian ultrasonik didasarkan pada penangkapan dan kuantifikasi gelombang pantul (pulse-echo) atau gelombang yang ditransmisikan (melalui transmisi). Masing-masing dari kedua jenis ini digunakan dalam aplikasi tertentu, namun pada umumnya, sistem pulse echo lebih berguna karena hanya memerlukan akses dari satu sisi ke objek yang diperiksa.
Prinsip dasar Ultrasonic Testing
Sistem inspeksi Ultrasonic Testing pulse-echo terdiri dari beberapa komponen alat, seperti pulser /receiver, transducer, dan perangkat display.
Sebuah pulser/ receiver adalah perangkat elektronik yang bisa menghasilkan pulse listrik tegangan tinggi. Didorong oleh pulser, transduser menghasilkan energi ultrasonik frekuensi tinggi. Energi suara merambat dan disebarkan melalui media dari obyek yang diperiksa dalam bentuk gelombang.
Bila ada diskontinuitas, misalnya seperti retakan, di jalur rambatan gelombang, energi akan dipantulkan kembali dari permukaan yang cacat tersebut. Sinyal gelombang yang dipantulkan diubah menjadi sinyal listrik oleh transduser dan ditampilkan di layar.
Dengan mengetahui kecepatan gelombang dan waktu tempuh maka jarak tempuh sinyal dapat diketahui pula. Dari sinyal tersebut, informasi tentang lokasi reflektor, ukuran, orientasi dan fitur lainnya terkadang bisa didapat.
Komentar
Posting Komentar